Lecture 10: Gravity Equation

Yuan Zi
University of Oslo (yuanzi.economics@gmail.com)

ECON4415 International Trade, Lecture 10, Fall 2018

Introduction

- "A gravity model is typically a log-linear relationship expressing bilateral trade between a pair of countries as a function of the two countries' income level, populations, and distance" Leamer \& Levinsohn (1995).
- The good news: Gravity rules!
- "[These estimates] have produced some of the clearest and most robust empirical finding in economics" Leamer \& Levinsohn (1995)

Introduction

- Traditional specification (Tinbergen, 1962)

$$
\begin{equation*}
\ln X_{i j}=\beta_{0}+\beta_{1} \ln G D P_{i}+\beta_{2} \ln G D P_{j}+\beta_{3} \ln d i s t_{i j}+\varepsilon_{i j} \tag{1}
\end{equation*}
$$

- Typical estimates:
$-\beta_{1}, \beta_{2}>0, \beta_{3}<0$
$-\beta_{1}, \beta_{2} \simeq 1, \beta_{3} \simeq-1$
- R^{2} around 80-90 \%

Introduction

France's exports in 2000

Introduction

France's imports in 2000

Introduction

Trade within the USA in 1997

Introduction

Gravity and the Margins of Trade

	$\ln \left(\right.$ Value $\left._{\text {c }}\right)$	'	$\ln \left(\right.$ Firms $\left._{\text {c }}\right)$	\ln Products $_{\text {c }}$)	$\ln \left(\right.$ Density $_{\text {c }}$)	In(Intensive ${ }_{\text {c }}$)
$\overline{\text { In(} \text { Distance }^{\text {c }} \text {) }}$	-1.37	I	-1.17	-1.10	0.84	0.05
	0.17	,	0.15	0.15	0.13	0.10
$\ln \left(\right.$ GDP $\left._{c}\right)$	1.01	'	0.71	0.55	-0.48	0.23
	0.04	1	0.03	0.03	0.03	0.02
Constant	7.82	'	0.52	3.48	-2.20	6.03
	1.83	I	1.59	1.55	1.37	1.07
Observations	175	,	175	175	175	175
R^{2}	0.82	,	0.76	0.68	0.66	0.37

Notes: Table reports results of country-level OLS regressions of U.S. exports or their components on trading-partners' GDP and great-circle distance (in kilometers) from the United States. Standard errors are noted below each coeficient. Data are for 2002.

Bernard, Redding and Schott (2008) "Multi-product Firms and Trade Liberalization"

Introduction

It always works, but for a long time, no theory-driven estimations. However:

- Recent theoretical and empirical research improved our understanding of the gravity relationship
- We know why it works...most trade models require gravity to work
- Gravity influenced theoretical analysis (NEG)

Reading

Head. K. and T. Mayer (2013), "Gravity equations: workhorse, toolkit, and cookbook", CEPR DP 9322

See also the associated webpage

Theoretical foundations: general formulations

Most theories yield a specification of the form

$$
X_{i j}=\frac{1}{Y} \frac{Y_{i}}{\Omega_{i}} \frac{X_{j}}{\Phi_{j}} \phi_{i j}
$$

(1) the exporter's value of production $Y_{i}=\sum_{j} X_{i j}$
(2) The importer's total expenditures $X_{j}=\sum_{i} X_{i j}$
(3) Bilateral accessibility of j to exporter i (i.e. bil. trade costs) $\phi_{i j}$
(4) "Multilateral resistance"terms: $\Omega_{i}=\sum_{l} \frac{\phi_{i} X_{l}}{\Phi_{I}}$ and $\Phi_{j}=\sum_{l} \frac{\phi_{j i} Y_{l}}{\Omega_{l}}$
\rightarrow Most specific trade models yield such a relationship

Gravity: specific models

Theoretical foundations: CES Demands

- Denote i the exporting country producing a set of variety indexed h, being consumed in country j
- CES utility function is

$$
U_{j}=\left[\int_{i=1}^{N} \int_{h=1}^{n_{i}}\left(b_{i j} q_{i j h}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}
$$

\rightarrow Interpret $b_{i j}$? σ ?

Theoretical foundations: CES Demands

- The corresponding demand function for a given product from country i in country j is:

$$
q_{i j}=\frac{b_{i j}^{\sigma-1} p_{i j}^{-\sigma}}{\int_{i=1}^{N} \int_{h=1}^{n_{i}} b_{i j}^{\sigma-1} p_{i j h}^{1-\sigma}} Y_{j}
$$

Defining the welfare based price index: $P_{j}=\left[\int_{i=1}^{N} \int_{h=1}^{n_{i}}\left(\frac{p_{j h}}{b_{i j}}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$

Theoretical foundations: CES Demands

And using the fact that $X_{i j}=q_{i j} p_{i j}$ we now have an equation defining the value of bilateral imports for a given variety:

$$
X_{i j}=\frac{\left(p_{i j} / b_{j j}\right)^{1-\sigma}}{\rho_{j}^{\sigma-1}} Y_{j}
$$

- Specific models?

National Product Differentiation (Anderson and Van Wincoop, 2003)

- As in Argmington (1968), each country is the unique source of each product
- Utiliy exhibits CES

$$
U_{j}=\left(\sum_{i} q_{i j} \frac{\sigma-1}{\sigma}\right)^{\frac{\sigma}{\sigma-1}}
$$

- Ïceberg" trade costs: $p_{i j}=p_{i} \tau_{i j}$
- "Phiness" of trade: $\phi_{i j}=\tau_{i j}^{1-\sigma}$

Theoretical foundations: CES \#1: NPD-AvW

- We get

$$
X_{i j}=\frac{\left(p_{i}\right)^{1-\sigma} \phi_{i j}}{P_{j}^{1-\sigma}} Y_{j}
$$

with the price index: $P_{j}=\left[\sum_{k=1}^{N}\left(p_{k} \tau_{k j}\right)^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$

Theoretical foundations: CES \#1: NPD-AvW

Anderson and Van Wincoop show that, in the special case of symmetric bilateral trade costs, the gravity equation can be rewritten:

$$
X_{i j}=\left(\frac{\tau_{i j}}{P_{j} P_{i}}\right)^{1-\sigma} \frac{Y_{i} Y_{j}}{Y_{W}^{W}}
$$

with $P_{j}=\left[\sum_{i=1}^{N} P_{i}^{\sigma-1} \tau_{i j}^{1-\sigma} \theta_{i}\right]^{\frac{1}{1-\sigma}}, \theta_{i}$ denoting the income share of country i
\rightarrow "Multilateral Resistance Indexes

Theoretical foundations: CES \#1: NPD-AvW

"Multilateral Resistance Indexes"

- Anderson and van Wincoop assume that trade costs are symmetric, and that trade is balanced, then use non-linear least squares to estimate the gravity equation
- Interpretation of these multilateral resistance terms?

Theoretical foundations: CES \#2: D-S-K

CES \#2: D-S-K (Dixit-Stiglitz-Krugman)

- DSK assumptions yield gravity
- Each country has n_{i} firms supplying one variety each to the world.
- $n_{i}=\frac{L_{i}}{\sigma F}$ (what is F ?)

We get:

$$
X_{i j}=n_{i j} x_{i j}=\frac{\left(p_{i} \tau_{j j}\right)^{1-\sigma}}{P_{j}^{1-\sigma}} \frac{Y_{j} L_{i}}{\sigma F}
$$

Theoretical foundations: Helpman, Melitz and Rubinstein (2008)

- Uses Melitz (2003): heterogeneous firms, monopolistic competition
- Selection into exporting: zero trade flows
- Assume productivity defined on $\left[\varphi_{L}, \varphi_{H}\right]$
\rightarrow firms export only if $\varphi \geq \varphi_{i j}^{*}$

Theoretical foundations: Helpman, Melitz and Rubinstein (2008)

Assume that the mass of potential entrants is $N_{i}=\alpha Y_{i}$
Bilateral exports (assuming the same $\mathbf{G}(\varphi)$ everywhere):

$$
X_{i j}=\frac{\tau_{i j}^{1-\sigma}}{P_{j}^{1-\sigma}} Y_{j} N_{i} \int_{\varphi_{i j}}^{\varphi_{H}} p_{i}(\varphi)^{1-\sigma} d G(\varphi)
$$

Theoretical foundations: Helpman, Melitz and Rubinstein (2008)

Prices: $p_{i}(\varphi)=\frac{\sigma}{\sigma-1} \frac{w_{i}}{\varphi}$

$$
\begin{gathered}
X_{i j}=\frac{\sigma}{\sigma-1} \frac{w_{i}^{1-\sigma} \tau_{i j}^{1-\sigma}}{P_{j}^{1-\sigma}} Y_{j} \alpha Y_{i} \int_{\varphi_{i j}}^{\varphi_{H}}\left(\frac{1}{\varphi}\right)^{1-\sigma} d G(\varphi) \text { if } \varphi_{i j}>\varphi_{L} \\
X_{i j}=0 \text { if } \varphi_{i j} \leq \varphi_{L}
\end{gathered}
$$

$\rightarrow 2$ issues: (i) omitted variables (ii) selection bias

- HMR assume that $G(\varphi)$ is Pareto distributed with a shape parameter (inverse measure of heterogeneity)

Estimation and specification issues

Estimation methods

- The general form of the gravity equation is

$$
X_{i j}=\frac{1}{Y} \frac{Y_{i}}{\Phi_{i}} \frac{Y_{j}}{\Phi_{j}} \phi_{i j}
$$

- Taking logs:

$$
\ln X_{i j}=\ln Y+\ln \frac{Y_{i}}{\Phi_{i}}+\ln \frac{Y_{j}}{\Phi_{j}}+\ln \phi_{i j}
$$

Estimation methods

$\ln X_{i j}=\ln Y+\ln \frac{Y_{i}}{\Phi_{i}}+\ln \frac{Y_{j}}{\Phi_{j}}+\ln \phi_{i j}$

- Tradition: using In GDPs (and possibly other variables, such as GDP per capita) as proxies for $\ln \frac{Y_{i}}{\Phi_{i}}$ and $\ln \frac{Y_{j}}{\Phi_{j}}$
- With GDPs only, omitted variable bias: "gold medal mistake"
- What bias? Solution?

Estimation methods

Method matters for the interpretation of coefficients. Take AvW (2003):

$$
X_{i j}=\frac{Y_{i} Y_{j}}{Y}\left(\frac{\phi_{j j}}{\Phi_{i} \phi_{j}}\right)
$$

- Bilateral trade is increasing in the remoteness. ${ }^{\circ}$ the pair $\frac{1}{\Phi i \phi_{j}}$. When omitted, all $\phi_{i j}$ variables that affect trade positively will tend to be biased downwards if they are negatively correlated with remoteness, and vice-versa
- With $\phi_{i j}=\tau_{i j}^{1-\sigma}$, estimation of σ is possible if one has data on direct price shifter like tariffs

Estimation methods

Main solutions:
(1) Include proxies for Φ_{i} and Φ_{j} such as "Remoteness indexes", e.g the inverse of Harris market potential $\sum_{i} Y_{i} /$ Dist $_{j i}$
(2) Ratio-type estimation
(3) More fancy approximation of the multilateral resistance terms
(4) Fixed effects estimations

Estimation methods

Main solutions:
(1) Include proxies for Φ_{i} and Φ_{j} such as "Remoteness indexes", e.g the inverse of Harris market potential $\sum_{i} Y_{i} /$ Dist $_{j i}$

Problem: doesn't take the theory seriously... why?

Estimation methods

"Ratio-type Gravity"

- One can use the multiplicative structure of the gravity model to get rid of trouble terms.
- Bilateral "relative" imports by country j from country i for a given industry / year (Head and Mayer, 2001)

$$
\begin{equation*}
\frac{X_{i j}}{X_{j j}}=\frac{n_{i}}{n_{j}}\left(\frac{p_{i}}{p_{j}}\right)^{1-\sigma}\left(\frac{\phi_{i j}}{\phi_{j j}}\right) \tag{8}
\end{equation*}
$$

Estimation methods

"Ratio-type Gravity"

- Problem: we need to observe "trade with self"
- But these manipulations can be done with any reference country (Martin et al., 2008)

$$
\frac{x_{i j}}{X_{U S j}}=\frac{n_{i}}{n_{U S}}\left(\frac{p_{i}}{p_{U S}}\right)^{1-\sigma}\left(\frac{\phi_{i j}}{\phi_{U S j}}\right)
$$

Estimation methods

"Bonus Vetus OLS", Baier and Bergstrand, 2009

- B \& B Approximate the multilateral resistance terms using a first-order log linear Taylor series expansion. They show that if trade costs are symmetric:

$$
\begin{aligned}
& \ln \Pi_{i}=\sum_{j=1}^{N} \theta_{j} \ln \tau_{i j}-\frac{1}{2} \sum_{k=1}^{N} \sum_{m=1}^{N} \theta_{k} \theta_{m} \tau_{k m}, i=2, \ldots, N \\
& \ln P_{j}=\sum_{i=1}^{N} \theta_{i} \ln \tau_{i j}-\frac{1}{2} \sum_{k=1}^{N} \sum_{m=1}^{N} \theta_{k} \theta_{m} \tau_{k m}, j=2, \ldots, N
\end{aligned}
$$

Estimation methods

Fixed effects estimation

- Include in the estimation Fixed effects of the dimension of Φ_{i} and Φ_{j}
- In a cross-section, means including importer and exporter FE.
- With panel data, importer \times year and exporter \times year FE
- No structural assumption on the underlying model, and can capture potential country-specific determinants of trade
- Problem: computational difficulties (imagine a model with 150 countries and 50 years...)
- Use reg2hdfe or reg3hdfe

Estimation methods

Fixed effects estimation

Issue with these approaches?

- What if we want to identify country-specific effects (income elasticities, effect of financial crises, effect of institutional determinants)
- A possibility is to estimate the specific with FE, and then regress the FE on the (country-specific) variable of interest

Method matters: Rose (2004), AER

Table 1: Benchmark Results

	Default	No Industrial Countries	Post '70	With Country Effects
Both in GATT/WTO	$\begin{array}{r} \hline-.04 \\ (.05) \\ \hline \end{array}$	$\begin{gathered} -.21 \\ (.07) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-.08 \\ & (.07) \\ & \hline \end{aligned}$	$\begin{gathered} .15 \\ (.05) \end{gathered}$
One in GATT/WTO	$\begin{array}{r} -.06 \\ (.05) \\ \hline \end{array}$	$\begin{array}{r} -.20 \\ (.06) \\ \hline \end{array}$	$\begin{array}{r} \hline-.09 \\ (.07) \\ \hline \end{array}$	$\begin{gathered} .05 \\ (.04) \\ \hline \end{gathered}$
GSP	$\begin{array}{r} .86 \\ (.03) \\ \hline \end{array}$	$\begin{array}{r} .04 \\ (.10) \\ \hline \end{array}$	$\begin{array}{r} .84 \\ (.03) \\ \hline \end{array}$	$\begin{array}{r} .70 \\ (.03) \\ \hline \end{array}$
$\begin{array}{r} \mathrm{Log} \\ \text { Distance } \\ \hline \end{array}$	$\begin{aligned} & -1.12 \\ & (.02) \\ & \hline \end{aligned}$	$\begin{array}{r} -1.23 \\ (.03) \\ \hline \end{array}$	$\begin{array}{r} -1.22 \\ (.02) \\ \hline \end{array}$	$\begin{array}{r} -1.31 \\ (.02) \\ \hline \end{array}$
Log product Real GDP	$\begin{array}{r} .92 \\ (.01) \\ \hline \end{array}$	$\begin{array}{r} .96 \\ (.02) \\ \hline \end{array}$	$\begin{aligned} & .95 \\ & (.01) \\ & \hline \end{aligned}$	$\begin{array}{r} .16 \\ (.05) \\ \hline \end{array}$
Log product Real GDP p/c	$\begin{array}{r} .32 \\ (.01) \\ \hline \end{array}$	$\begin{array}{r} .20 \\ (.02) \\ \hline \end{array}$	$\begin{array}{r} .32 \\ (.02) \\ \hline \end{array}$	$\begin{gathered} .54 \\ (.05) \\ \hline \end{gathered}$
Regional FTA	$\begin{aligned} & 1.20 \\ & (.11) \end{aligned}$	$\begin{array}{r} 1.50 \\ (.15) \\ \hline \end{array}$	$\begin{array}{r} 1.10 \\ (.12) \\ \hline \end{array}$	$\begin{gathered} .94 \\ (.13) \\ \hline \end{gathered}$
Currency Union	$\begin{array}{r} 1.12 \\ (.12) \\ \hline \end{array}$	$\begin{array}{r} 1.00 \\ (.15) \\ \hline \end{array}$	$\begin{array}{r} 1.23 \\ (.15) \\ \hline \end{array}$	$\begin{array}{r} 1.19 \\ (.12) \\ \hline \end{array}$
Common Language	$\begin{array}{r} .31 \\ (.04) \\ \hline \end{array}$	$\begin{gathered} .10 \\ (.06) \\ \hline \end{gathered}$	$\begin{gathered} .35 \\ (.04) \\ \hline \end{gathered}$	$\begin{gathered} .27 \\ (.04) \\ \hline \end{gathered}$
$\begin{array}{rr} \hline & \begin{array}{r} \text { Land } \\ \text { Border } \end{array} \\ \hline \end{array}$	$\begin{array}{r} 53 \\ (.11) \\ \hline \end{array}$	$\begin{array}{r} .72 \\ (.12) \\ \hline \end{array}$	$\begin{array}{r} .69 \\ (.12) \\ \hline \end{array}$	$\begin{gathered} .28 \\ (.11) \end{gathered}$

Method matters: Baier and Bergstrand (2009), JIE

Table 1

Estimation results: Canada-U.S

Parameters	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS w/o	A-vW	A-vW	OLS with	Fixed	A-vW	OLS with
	MR terms	NLS-2	NLS-3	MR terms	effects	NLS-2-a	MR terms-a
$-\rho(\sigma-1)$ for	-1.06	-0.79	-0.82	-0.82	-1.25	-0.92	-1.02
distance	(0.04)	(0.03)	(0.03)	(0.04)	(0.04)	(0.03)	(0.03)
$-\alpha(\sigma-1)$ for	-0.71	-1.65	-1.59	-1.11	-1.54	-1.65	-1.24
border	(0.06)	(0.08)	(0.08)	(0.07)	(0.06)	(0.07)	(0.07)
Avg. error terms							
US-US	-0.21	0.06	0.06	0.39	0.00	0.05	0.27
CA-CA	1.95	-0.17	-0.02	-0.34	0.00	-0.22	-0.23
US-CA	0.00	-0.05	-0.04	-0.50	0.00	-0.04	-0.35
R^{2}	0.42	n.a.	n.a.	0.36	0.66	n.a.	0.60
No. of obs.	1511	1511	1511	1511	1511	1511	1511

Numbers in parentheses are standard errors of the estimates. n.a. denotes not applicable.

Method matters: Martin, Mayer, Thoenig (2008), REStud

Impact of militarized interstate dispute on trade

	Dependent variables			
	In imports		$\ln m_{i j t} / m_{\text {iut }}$	
	Model (1)	Model (2)	Model (3)	Model (4)
ln GDP origin	$\begin{gathered} 0.959^{* * * *} \\ (0.006) \end{gathered}$	$\begin{gathered} 0.940^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 1.001^{* * *} * \\ (0.007) \end{gathered}$	$\begin{gathered} 0.976^{* * *} \\ (0.008) \end{gathered}$
1 n GDP destination	$\begin{gathered} 0.847^{*} * * \\ (0.006) \end{gathered}$	$\begin{gathered} 0.846^{* * *} \\ (0.007) \end{gathered}$	-	-
In distance	$\begin{gathered} -1.008 * * * \\ (0.017) \end{gathered}$	$\begin{gathered} -0.991 * * * \\ (0.019) \end{gathered}$	$\begin{gathered} -1 \cdot 188^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -1 \cdot 158^{* * *} \\ (0.019) \end{gathered}$
Contiguity	$\begin{gathered} 0.452^{* * *} \\ (0.075) \end{gathered}$	$\begin{gathered} 0.412^{* * *} \\ (0.078) \end{gathered}$	$\begin{gathered} 0.663^{* * *} * \\ (0.066) \end{gathered}$	$\begin{gathered} 0.680 * * * \\ (0.069) \end{gathered}$
Similarity in language index	$\begin{gathered} 0.331 * * * \\ (0.070) \end{gathered}$	$\begin{gathered} 0.301^{* * *} \\ (0.074) \end{gathered}$	$\begin{aligned} & 0.128^{* *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & 0.112^{*} \\ & (0.065) \end{aligned}$
Colonial link ever	$\begin{gathered} 1 \cdot 121^{* * *} \\ (0.088) \end{gathered}$	$\begin{gathered} 1.060 * * * \\ (0.093) \end{gathered}$	$\begin{gathered} 0 \cdot 302 * * * \\ (0.061) \end{gathered}$	$\begin{gathered} 0.257 * * * \\ (0.063) \end{gathered}$
Common colonizer post-1945	$\begin{gathered} 0.568^{* * *} \\ (0.058) \end{gathered}$	$\begin{gathered} 0.499 * * * \\ (0.064) \end{gathered}$	$\begin{gathered} 0.545 * * * \\ (0.063) \end{gathered}$	$\begin{gathered} 0.450 * * * \\ (0.069) \end{gathered}$
Preferential trade arrangement	$\begin{gathered} 0.545^{*} * * \\ (0.049) \end{gathered}$	$\begin{gathered} 0.539^{* * *} \\ (0.052) \end{gathered}$	$\begin{gathered} 0.441^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} 0.426^{* * *} \\ (0.053) \end{gathered}$
Number of GATT/WTO members	$\begin{gathered} 0 \cdot 204^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.223^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.337 * * * \\ (0.034) \end{gathered}$	$\begin{gathered} 0.364^{*} * * \\ (0.036) \end{gathered}$
One communist regime among partners	$\begin{gathered} -0.399^{* * *} \\ (0.032) \end{gathered}$	$\begin{gathered} -0.422 * * * \\ (0.034) \end{gathered}$	$\begin{gathered} -0.720^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} -0.767^{* * *} \\ (0.045) \end{gathered}$
bil. MID + 0 years	$\begin{gathered} -0.245^{* * *} \\ (0.059) \end{gathered}$	$\begin{gathered} -0.244^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} -0.485 * * * \\ (0.036) \end{gathered}$	$\begin{gathered} -0.434^{* * *} \\ (0.032) \end{gathered}$
Equation			Yuan	(0) 36/56

Estimation methods

Other problem: heteroscedasticity

Pointed out by Santos Silva and Tenreyro (2006)

- Problems with log-specification: heteroskedasticity
... which may lead to inconsistent OLS estimates of log-linearized models due to heteroscedasticity
- Why? Because the expected value of the log of a random var. depends on its mean and on higher order moments of the distribution
- More precisely, $E[\log (u \mid X)] \simeq \log [E(u \mid X)]-\frac{\operatorname{Var}(u \mid X)}{2 E(u \mid X)}$
- Poisson pseudo-maximum likelihood estimations (PPML) or Gamma PML

Estimation methods

Problem with log-specification: zeros

- Log of zero does not exist...but we observe zeros in trade data
- At the aggregated level only 50% of possible trade lines are filled
- What to do with these zeros?

Estimation methods: zero trade flows

- What to do with these zeros?
- Drop them? Selection bias
- Assume they are small positive trade flows: replace all observations by $x+1$: inconsistent estimator
- Use an estimator that allows the inclusion of zeros (PPML or Tobit)
- Control for selection bias? Heckman model : need an exclusion variable (which explains the selection but not the value of traded flow). Problems with Heckman model?
- Related question: where do the zeros come from? "Real"zeros or statistical issue?

Gravity equations: applications

The gravity equation: what for?

-Estimate / evaluate the impact of trade barriers:

- Direct estimation: influence of RTAs, tariffs, exchange rate volatility
- Estimate parameters of trade model (σ)
- Measuring border effects
- Proxies of trade costs: influence of distance, cultural proximity (language, colonial links, migrations, etc...)

The gravity equation: what for?

- Measuring the influence of distance
- Consider the real extent of globalization: is the world really flat?
- Evaluating (overall) trade barriers
- Track informal barriers (norms, administrative barriers, etc)
\rightarrow Border effects
- Measuring the impact of joining WTO, FTA, Monetary Union
- Estimating the effect of the current financial crisis

Meta-analysis of gravity variables (Head and Mayer, 2013)

Table 4: Estimates of typical gravity variables

	All Gravity				Structural Gravity			
Estimates:	median	mean	s.d.	$\#$	median	mean	s.d.	$\#$
Origin GDP	.97	.98	.42	700	.86	.74	.45	31
Destination GDP	.85	.84	.28	671	.67	.58	.41	29
Distance	-.89	-.93	.4	1835	-1.14	-1.1	.41	328
Contiguity	.49	.53	.57	1066	.52	.66	.65	266
Common language	.49	.54	.44	680	.33	.39	.29	205
Colonial link	.91	.92	.61	147	.84	.75	.49	60
RTA/FTA	.47	.59	.5	257	.28	.36	.42	108
EU	.23	.14	.56	329	.19	.16	.5	26
CUSA/NAFTA	.39	.43	.67	94	.53	.76	.64	17
Common currency	.87	.79	.48	104	.98	.86	.39	37
Home	1.93	1.96	1.28	279	1.55	1.9	1.68	71

Notes: The number of estimates is 2508 , obtained from 159 papers. Structural gravity refers here to some use of country fixed effects or ratio-type method.

The impact of distance: Disdier \& Head (2008, Restat)

Meta Analysis: examine 1467 distance effects estimated in 103 papers
Finding: the estimated negative impact of distance on trade actually rose aroun the middle of the XXth century

Solid point: highest \mathbf{R}^{2} in the paper

The gravity equation: what for?

Impact of currency unions on bilateral trade: Rose (2000, Economic Policy)

- Very simple analysis of the impact of CUs
- Focus on all existing unions (but discussion oriented toward the EMU)
- Very basic methodology: create a dummy CU. plug it into a gravity equation, estimate with OLS

$$
\ln \left(x_{i j}\right)=\alpha_{1} \ln G D P_{i}+\alpha_{2} \ln G D P_{j}+\alpha_{3} \ln D i s t_{i j}++\alpha_{4} C U_{i j}+X_{i j}+\varepsilon_{i j}
$$

Belonging to a CU multiplies bilateral trade by $\exp \left(\alpha_{4}\right)$

The impact of CU: Rose (2000, Economic Policy)

Belonging to a CU multiplies trade by $\mathrm{e}^{1.21}=3.35$!
Problems with Rose's methodology?

	1970	1975	1980	1985	1998	Pooled
Currency Union γ	.87	1.28	1.09	1.40	$(1.51$	1.21
	$(.43)$	$(.41)$	$(.26)$	$(.27)$	(27)	$(.14)$
Exchange Rate Volatility δ	-.062	.001	-.060	-.028	-.009	017
	$(.012)$	$(.008)$	$(.010)$	$(.005)$	$(.002)$	$(.002)$
Output b_{1}	.77	.81	.81	.80	.83	.80
	$(.02)$	$(.01)$	$(.01)$	$(.01)$	$(.01)$	$(.01)$
Output/Capita b_{2}	.65	.66	.61	.66	.73	.66
	$(.03)$	$(.03)$	$(.02)$	$(.02)$	$(.02)$	$(.01)$
Distance b_{3}	-1.09	-1.15	-1.03	-1.05	-1.12	-1.09
	$(.05)$	$(.04)$	$(.04)$	$(.04)$	$(.04)$	$(.02)$
Contiguity b_{4}	.48	.36	.73	.52	.63	.53
	$(.21)$	$(.19)$	$(.18)$	$(.18)$	$(.18)$	$(.08)$
Language b_{5}	.56	.36	.28	.36	.50	.40
	$(.10)$	$(.10)$	$(.09)$	$(.08)$	$(.08)$	$(.04)$
FTA b_{6}	.87	1.02	1.26	1.21	.67	.99
	$(.16)$	$(.21)$	$(.16)$	$(.17)$	$(.14)$	$(.08)$
Same Nation b_{7}	1.02	1.37	1.12	1.36	.88	1.29
	$(.74)$	$(.59)$	$(.38)$	$(.64)$	$(.52)$	$(.26)$

The gravity equation: the effect of currency unions

Obvious critics:

- Awkward data: most of the common currency pairs involved nations that were very small / very poor
- Omitted variables: that are pro-trade and correlated with CU dummy; biases the estimates upward (eg trust, peaceful relations, etc)
- Reverse causality: large bilateral flows cause a CU...
- Model Mis-specification

The impact of CU: Rose and Van Wincoop (2001)

Table 1: Impact of Currency Union on International Trade, 1970-1995

Currency Unign Dumux	$\begin{aligned} & 1.38 \\ & (.19) \\ & \hline \end{aligned}$	$\begin{array}{r} .86 \\ (.19) \\ \hline \end{array}$
Log Distance	$\begin{gathered} -1.06 \\ (.03) \\ \hline \end{gathered}$	$\begin{aligned} & -1.31 \\ & (.03) \\ & \hline \end{aligned}$
Log Product Real GDP	$\begin{gathered} .94 \\ (.01) \\ \hline \end{gathered}$	$\begin{aligned} & 1.06 \\ & (.04) \\ & \hline \end{aligned}$
Common Language Dummy	$\begin{gathered} .56 \\ (.06) \\ \hline \end{gathered}$	$\begin{gathered} .48 \\ (.06) \\ \hline \end{gathered}$
Common Land Border Dummy	$\begin{gathered} .63 \\ (.12) \\ \hline \end{gathered}$	$\begin{gathered} .30 \\ (.13) \\ \hline \end{gathered}$
Free Trade Agreement Drummy	$\begin{aligned} & 1.09 \\ & (.10) \\ & \hline \end{aligned}$	$\begin{array}{r} .46 \\ (.12) \\ \hline \end{array}$
Common Colonizer Dummy	$\begin{gathered} .41 \\ (.08) \\ \hline \end{gathered}$	$\begin{gathered} .68 \\ (.08) \\ \hline \end{gathered}$
Ex-Colony/ Colonizer Dummy	$\begin{aligned} & 1.97 \\ & (.13) \end{aligned}$	$\begin{aligned} & 1.74 \\ & (.13) \end{aligned}$
Political Union Dummy	$\begin{gathered} .95 \\ (.37) \\ \hline \end{gathered}$	$\begin{gathered} .81 \\ (.32) \\ \hline \end{gathered}$
Log Product Real GDP/capita	$\begin{gathered} .48 \\ (.02) \\ \hline \end{gathered}$	
Number landlocked	$\begin{aligned} & -.32 \\ & (.04) \\ & \hline \end{aligned}$	
Log of Land Area Product	$\begin{gathered} -.15 \\ (.01) \\ \hline \end{gathered}$	
RMSE	1.97	1.74
R^{2}	. 64	. 72
Observations	31,101	31,101
	$\begin{aligned} & \text { Time } \\ & \text { Effects } \end{aligned}$	Time, Country Effects

«Gold Medal» Mistake: Rose (2000) omitted country FE The effect drops... the estimates were severely biased upwards ...but the effect is still very large

Without FE: Trade * 3.97
With FE: Trade*2.36

Other ways to control for omitted variable bias?

The gravity equation: the effect of currency unions

Omitted variables

- Simple solution: dyadic fixed effects
- Will control for anything that does not vary over time and affects bilateral trade.

Glick and Rose (2000, European Economic Review): coefficient decrease to 0.65: CU increase trade by 90 \%

The gravity equation: the effect of currency unions

Omitted variable

- Volker Nitsch ("Honey, I shrunk the currency union effect on trade")
- Finds that exit have a very negative impact, entry have an insignificant one
- Exit often go together with time-varying troubles (political, etc)

The gravity equation: the effect of currency unions

Self-selection

- CU pairs are very unusual countries: very small country, nearby a large one, that trade a lot
- the "experiment" CU is by no way random (self selection)
- Solution: Matching: find for each pair of country the most proximate country pair which is not a CU

Self-selection

- Persson (2001)

First Step: Probability of
joining a CU

Table 2. Propensity score (logit parameter estimates)

Output	-0.240
	(0.033)
Output/per capita	-0.168
	(0.058)
Distance	-1.016
	(0.088)
Continguity	-0.390
Language	(0.278)
	1.743
Free trade area	(0.208)
	-1.431
Same nation	(0.292)
	6.246
Same colonizer	(0.546)
Colonial relation	1.401
	(0.203)
No. Obs.	-1.817
Pseudo R	(0.695)

Note: Standard errors in brackets.

The gravity equation: the effect of RTAs

Effects of Regional Trade Agreements

- Previous discussion on CU also applied to RTAs

Table 4
Panel gravity equations in levels using various specifications

Variable	(1) No fixed or time effects	(2) With time effects	(3) With bilateral fixed effects	(4) With time and bilateral fixed effects
$\ln \mathrm{RGDP}_{i}$	$0.95(217.50)$	$0.97(230.98)$	$0.71(34.54)$	$1.27(47.16)$
$\ln \mathrm{RGDP}_{j}$	$0.94(224.99)$	$0.97(235.43)$	$0.58(26.57)$	$1.22(41.60)$
${\ln \mathrm{DIST}_{i j}}^{\mathrm{ADJ}_{i j}}$	$-1.03(-79.09)$	$-1.01(-78.60)$		
LANG $_{i j}$	$0.41(8.23)$	$0.38(7.28)$		
FTA $_{i j}$	$0.63(19.06)$	$0.58(17.73)$		$0.68(14.27)$
RMSE $^{0.13(3.73)}$	1.9270	$0.27(7.19)$	$0.51(10.74)$	
Overall R^{2}	0.6575	1.8601		0.2268
Within R^{2}		0.6809		47,081
No. observations	47,081	47,081	47,081	

t-statistics are in parentheses. The dependent variable is the (natural \log of the) real bilateral trade flow from i to j. Coefficient estimates for various fixed/time effects are not reported for brevity.

Acknowledgment

Slides of this course are inspired by those taught by N. Berman, T. Chaney, A. Costinot, M. Crozet, D. Donaldson, E. Helpman, T. Mayer, I. Mejean

