Lecture 6: New Economic Geography

Yuan Zi

University of Oslo (yuanzi economics@gmail.com)

ECON4415 International Trade, Lecture 6, Fall 2018

New Economic Geography

Yuan Zi (UiO) 1/38

Introduction

- Economic geography received relative little attention until the early 1990s
- Despite the fact that
 - Production, trade and income are distributed extremely unevenly across physical space
 - Agglomeration of overall economic activity most evident in cities
 - By 1990, 37.6% of the world's population lived in cities
 - By 1995, 15 cities with a population > 10 million
 - Geographical concentration of particular activities
 - US manufacturing belt in NE and Eastern Midwest
 - Dalton as a carpet manufacturing centre in Georgia
 - Silicon Valley and Route 128 in Massachusetts

What is economic geography?

- What do we mean by economic geography?
 - Location of economic activity in space
 - First-nature geography: Physical geography of coasts, mountains and endowments of natural resources
 - Second-nature geography: The spatial relationship between economic agents
- Our analysis will largely focus on second-nature geography: How does the *spatial* relationship between agents determine how they interact, what they do, and how well off they are?

Agglomerations

The occurrence of agglomerations raises several questions:

- How come that economic activity is agglomerated instead of evenly spread out across space?
- What implications do agglomerations have for welfare and economic policy?
- How do increased globalization and integration affect the number, size, and localization of industrial agglomerations?

Self-reinforcing agglomerations

- An agglomeration is self-reinforcing when the profitability of a firm is determined by the localization of other firms.
- In other words, self-reinforcing agglomerations rely on the existence of localized external economies of scale.
- Implications
 - The existence of multiple equilibria
 - Irreversibility
 - Critical mass
 - History (path dependence)
 - (Self-fulfilling) expectations

Today's lecture

- Introduction
- Krugman and Helpman (1985)
- Krugman (1991)
- Empirical evidence

New Economic Geography

Yuan Zi (UiO) 7/38

- Problem with Krugman (1980) models: no room for specialization (single differentiated good)
- How does intra-industry trade affect specialization patterns?
- Assume there are 2 sectors: one with a differentiated good (IRS, for instance with CES production function, etc.), the other with an homogenous good produced under CRS, freely traded.
- Consumer spend a fixed share μ of their budget in differentiated goods, and the marginal productivity in the CRS sector is normalized to 1 in both countries (implies that wages are equalized across countries as labor is mobile across sectors)

• For the differentiated good we have

$$q = q^{D} + \tau q^{X} = \mu(\frac{p}{P})^{-\sigma} \frac{wL}{P} + \tau \mu(\frac{\tau p}{P^{*}})^{-\sigma} \frac{wL^{*}}{P^{*}}$$

• Since
$$q = q^*$$
 (why?) we can show that
 $n(1 - \tau^{1-\sigma} \frac{L}{L^*}) = n^*(\frac{L}{L^*} - \tau^{1-\sigma})$

- Which we can use to compute the allocation of differentiated producers across countries as function of L/L^* and τ

• Denote
$$s_n = \frac{n}{n+n^*}$$
 and $s_L = \frac{L}{L+L^*}$

New Economic Geography

• We have
$$s_n = \frac{s_L(1+\tau^{1-\sigma})-\tau^{1-\sigma}}{1-\tau^{1-\sigma}} \Rightarrow \frac{ds_n}{ds_L} > 0$$

- For $s_L < \frac{\tau^{1-\sigma}}{1+\tau^{1-\sigma}}$ or $s_L > \frac{1}{1+\tau^{1-\sigma}}$: full specialization of one country in the production of the differentiated good
- The smaller $\tau,$ the small the interval of size where both countries produce the differentiated good
- If s_n lies in the interval, the larger country host a higher share of output than its share of global population:

$$s_n = s_L + rac{1}{2} rac{ au^{1-\sigma}}{1- au^{1-\sigma}} (s_L - rac{1}{2}) > s_L$$
 if $s_L > 1/2$

• Moreover we have $\frac{ds_n}{ds_L} > 1$: the share of output grows faster than the share in population \Rightarrow Home Market Effect

Comments

- Transport costs, increasing returns to scale and love of variety provide forces of agglomeration (forward & backward linkages)
- Mobility of manufacturing workers is central and, therefore, the model may be more applicable within than between countries
- We can add immobile production factors to provide a force for deagglomeration/dispersion.

Krugman (1991)

New Economic Geography

Yuan Zi (UiO) 12/38

The model

- An economy with two locations: North and South
- Two goods:
 - Agricultural goods: Homogenous, perfect competition and CRS
 - Manufacturing goods: Differentiated, monopolistic competition and IRS
- There are two factors (a specific factors model)
 - Workers used only in the manufacturing sector and geographically mobile, $L_{M}=\mu$
 - Farmers used only in the agricultural sector and geographically immobile
 - Each region endowed with $L_A^i = (1 \mu)/2$ farmers

Consumption and production

Consumer preferences

$$U = C_M^{\mu} C_A^{1-\mu}$$

$$C_M = \left[\sum_j c_j^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}, \quad P_M = \left[\sum_j p_j^{1-\sigma}\right]^{\frac{1}{1-\sigma}}, \sigma > 1$$

- Production
 - Agriculture

1

 $Z = L_A$

• Manufacturing

$$L_{Mj} = \alpha + \beta x_j$$

- Transportation costs
 - No transportation costs in agriculture
 - Iceberg transportation costs au > 1 in manufacturing sector

 \rightarrow Normalize agriculture price and wage to one. Denote manufacturing wage as w

Producer equilibrium (as in Krugman 1980)

Profit maximization given the CES consumer demand implies firms charge a constant markup over produced varieties

$$p_j = p = \left(\frac{\sigma}{\sigma - 1}\right) \beta w, \quad \forall j$$

• Free entry implies zero equilibrium profits

$$(\boldsymbol{p}-\boldsymbol{\beta}\boldsymbol{w})\,\boldsymbol{x}_{j}=\boldsymbol{\alpha}\boldsymbol{w},$$

implies a constant equilibrium output of each variety

$$x_j = rac{lpha (\sigma - 1)}{eta}, \qquad orall j$$

New Economic Geography

The wage equation

• For each firm supply=demand. This yeilds equilibrium wage at each location

$$x = \left[\mu Y^{N} \left(p^{N}\right)^{-\sigma} \left(P^{N}\right)^{\sigma-1} + \mu Y^{S} \left(p^{N}\right)^{-\sigma} \left(P^{S}\right)^{\sigma-1} \tau^{1-\sigma}\right],$$
$$w^{N} = \frac{\sigma-1}{\sigma\beta} \left(\frac{\mu}{x}\right)^{\frac{1}{\sigma}} \underbrace{\left[Y^{N} \left(P^{N}\right)^{\sigma-1} + Y^{S} \left(P^{S}\right)^{\sigma-1} \tau^{1-\sigma}\right]^{\frac{1}{\sigma}}}_{\text{Market access for firms at location N}}.$$

Similarly

$$w^{S} = \frac{\sigma - 1}{\sigma \beta} \left(\frac{\mu}{x}\right)^{\frac{1}{\sigma}} \underbrace{\left[Y^{N}\left(P^{N}\right)^{\sigma - 1}\tau^{1 - \sigma} + Y^{S}\left(P^{S}\right)^{\sigma - 1}\right]^{\frac{1}{\sigma}}}_{\text{Market access for firms at location S}}$$

Number of Varieties

Equilibrium number of manufacturing varieties

$$n_M = \frac{L_M}{\alpha + \beta x} = \frac{L_M}{\alpha \sigma}$$

Real wages and regional incomes

• Equilibrium real wage of manufacturing workers

$$\omega_M^N = \frac{w_M^N}{\left(P_M^N\right)^{\mu} \left(p_A^N\right)^{1-\mu}}$$

• Equilibrium regional income

$$Y^{N} = w_{M}^{N}L_{M}^{N} + \left(\frac{1-\mu}{2}\right)$$

Convenient Normalizations

• Choice of units to measure output of manufacturing varieties

$$\beta = \frac{\sigma - 1}{\sigma} \Rightarrow p_M = w_M$$

• Choice of units with which to count manufacturing varieties

$$\alpha = \frac{\mu}{\sigma} \Rightarrow \begin{cases} n_M = \frac{L_M}{\mu} \\ x = \mu \end{cases}$$

• Denote North's share of manufacturing workers by λ and hence South's share by $(1 - \lambda)$.

Determination of Equilibrium

Eight simultaneous non-linear equations in eight unknowns

Income

$$Y^{N} = \mu \lambda w_{M}^{N} + \left(\frac{1-\mu}{2}\right); \qquad Y^{S} = \mu \left(1-\lambda\right) w_{M}^{S} + \left(\frac{1-\mu}{2}\right)$$

• Price Indices

$$P_{M}^{N} = \left[\lambda \left(w_{M}^{N}\right)^{1-\sigma} + (1-\lambda) \left(w_{M}^{S}\tau\right)^{1-\sigma}\right]^{1/(1-\sigma)}$$
$$P_{M}^{S} = \left[\lambda \left(w_{M}^{N}\tau\right)^{1-\sigma} + (1-\lambda) \left(w_{M}^{S}\right)^{1-\sigma}\right]^{1/(1-\sigma)}$$

New Economic Geography

Determination of Equilibrium cont

• Nominal Wages

$$w_{M}^{N} = \left[Y^{N}\left(P_{M}^{N}\right)^{\sigma-1} + Y^{S}\left(P_{M}^{S}\right)^{\sigma-1}\tau^{1-\sigma}\right]^{\frac{1}{\sigma}}$$
$$w_{M}^{S} = \left[Y^{N}\left(P_{M}^{N}\right)^{\sigma-1}\tau^{1-\sigma} + Y^{S}\left(P_{M}^{S}\right)^{\sigma-1}\right]^{\frac{1}{\sigma}}$$

• Real Wages

$$\omega_M^N = \frac{w_M^N}{\left(P_M^N\right)^{\mu}}$$
$$\omega_M^S = \frac{w_M^S}{\left(P_M^S\right)^{\mu}}$$

New Economic Geography

Price Index

- The location with a larger manufacturing sector also has a lower price index for manufacturing goods
 - Because a smaller proportion of the region's manufacturing consumption bears transport costs

 \Rightarrow Forward linkage: workers wish to be close to abundant supplies of manufacturing goods

Market access effect

- Increasing returns to scale implies that producers wish to concentrate production in a single location
- Transport costs imply that they wish to concentrate production close to a large market

 \Rightarrow Backward linkage: firms wish to locate production close to large markets for manufacturing goods

Home Market Effect, Nominal and Real Wages

- Implies a 1 percent change in manufacturing demand leads to a more than proportionate increase in manufacturing production
 - Magnification effect caused by IRS + trade cost
 - IRS, no trade cost \rightarrow production locate at one place, but can be any place (production concentration)
 - IRS, positive trade cost ightarrow *tend to* located near big market
 - Contrast with predictions under CRS + trade cost
 - CRS, no trade cost \rightarrow production can locate anywhere (spread/concentrate)
 - CRS, positive trade cost \rightarrow spread production co-locate with consumption
- Implies that locations with higher demand for manufactures will tend to pay higher nominal wages
- Price index and home market effects imply that locations with more manufacturing sectors will, other things equal, pay higher real wages
- \Rightarrow Forward and Backward linkages together provide forces of Cumulative Causation

Sustainability of a Core-Periphery Pattern

- Suppose that all manufacturing is concentrated in the North. When is this an equilibrium?
 - Set $\lambda=1$ and guess $w_M^N=1$
 - Then confirm $w_M^N = 1$ is indeed an equilibrium from the Northern wage equation

$$Y^N = \left(\frac{1+\mu}{2}\right) \qquad Y^S = \left(\frac{1-\mu}{2}\right)$$

Sustainability of a Core-Periphery Pattern cont

Price Indices

$$P_M^N = 1$$
$$P_M^S = \tau$$

Real Wages

$$\omega_M^N = 1$$

$$\omega_M^S = \tau^{-\mu} \left[\left(\frac{1+\mu}{2} \right) \tau^{1-\sigma} + \left(\frac{1-\mu}{2} \right) \tau^{\sigma-1} \right]^{\frac{1}{\sigma}}$$

• The concentration of manufacturing in the North will be an equilibrium if and only if $\omega_M^S < 1$, i.e. workers in the North do not have any incentive to move to the South.

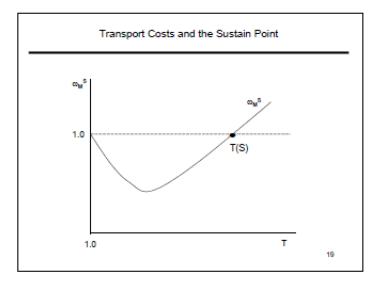
Determinants of the Sustain Point

• Sustainability of a Core-Periphery Pattern

$$\omega_M^S = \tau^{-\mu} \left[\left(\frac{1+\mu}{2} \right) \tau^{1-\sigma} + \left(\frac{1-\mu}{2} \right) \tau^{\sigma-1} \right]^{\frac{1}{\sigma}}$$

- Solve for the level of transport costs (Sustain point T(S)) at which $\omega_M^S < 1$ and a core-periphery pattern is sustainable
 - When will a worker wish to move to the South?

Determinants of the Sustain Point


Transport costs and the Sustain Point

$$\left(\omega_{M}^{S}\right)^{\sigma} = \left[\left(\frac{1+\mu}{2}\right)\tau^{1-\sigma-\mu\sigma} + \left(\frac{1-\mu}{2}\right)\tau^{\sigma-1-\mu\sigma}\right]$$

• When au=1 (no transport costs), location is irrelevant : $\omega^{\mathcal{S}}_{M}=1$

- At low levels of transport costs, $\tau>1$: Agglomeration is sustainable because $\omega_M^S<1.$
- At high levels of transport costs,au>1 :
 - First term above becomes arbitrarily small
 - Second term has two possibilities:
 - If $(\sigma-1) < \mu\sigma$, it becomes arbitrarily small and agglomeration forces are so strong that a core-periphery pattern is always an equilibrium
 - We typically assume $(\sigma 1) > \mu \sigma$ (no black hole condition): Core-periphery pattern only an equilibrium for levels of transport costs below the sustain point *TS*

The polarized world

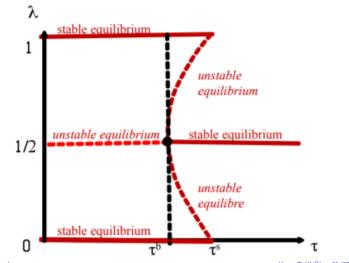
When is a Symmetric Equilibrium Broken?

• Consider a symmetric equilibrium

$$\lambda = 1/2$$

$$Y^N = Y^S = 1/2, \qquad \qquad w^N = w^S = 1$$

$$P^N_M = P^S_M = \left[\frac{1+\tau^{1-\sigma}}{2}\right]^{\frac{1}{1-\sigma}}$$


- Check that all equilibrium conditions satisfied at these values for the endogenous variables
- Totally differentiate around the symmetric equilibrium and evaluate the impact of worker moving S to N on the real wage gap $\omega = \omega^N \omega^S$

$$\frac{d\omega}{d\lambda} = 0 \quad \text{if} \quad \tau^{\frac{\rho}{1-\rho}} = \frac{(\rho+\mu)(1+\mu)}{(\rho-\mu)(1-\mu)} \equiv T(B), \quad \rho = \frac{\sigma-1}{\sigma}$$

When $\tau < T(B)$, the symmetric equilibrium becomes unstable

New Economic Geography

Spatial equilibrium and transportation cost: the 'Tomahawk ' diagram

New Economic Geography

Yuan Zi (UiO) 31/38

Empirical evidence

New Economic Geography

Yuan Zi (UiO) 32/38

- Head and Ries (1999), "Rationalization effect of tariff reductions", Journal of International Economics
- Evidence from the US-Canada Free Trade Agreement (1988)
- Study 230 Canadian manufacturing industries between 1981 and 1994

Table 3								
Effects of tariffs on log output per plant $(\ln q)$								
	Sample:							
	All	Imp. Com.	IC+Free	IC+Fixed	All			
Canadian Tariff	1.134 ^a	1.247 ^a	0.279	3.824 ^a	4.928 ^a			
	(0.368)	(0.411)	(0.455)	(0.925)	(1.135)			
U.S. Tariff	-1.638^{a}	-2.227^{a}	-0.937	-5.632^{a}	-6.371^{a}			
	(0.596)	(0.716)	(0.828)	(1.403)	(2.078)			
Cdn. Tariff					-17.952^{a}			
\times Turnover					(5.489)			
U.S. Tariff					20.131 ^c			
\times Turnover					(10.289)			
1994	0.179 ^a	0.172 ^a	0.117 ^a	0.301 ^a	0.186 ^a			
	(0.020)	(0.022)	(0.025)	(0.040)	(0.021)			
R^2 (within)	0.175	0.173	0.129	0.338	0.191			
Root MSE	0.149	0.152	0.149	0.154	0.149			
No. of Obs.	1828	1628	1183	445	1693			

Note: Fixed industry year effects are not reported except for 1994 which approximates the percent change from 1988. Standard errors in parentheses.^a,^b,^c indicate significance in a two-tail test at the 1, 5 and 10 percent levels.

- Opposite effect of US and Canadian tariff reduction on output by firm - In net firm size did not change much

	Sample:							
	All	Imp. Com.	IC+Free	IC+Fixed	All			
Canadian Tariff	1.134 ^a	1.247 ^a	0.279	3.824 ^a	4.928ª			
	(0.368)	(0.411)	(0.455)	(0.925)	(1.135)			
U.S. Tariff	-1.638^{a}	-2.227^{a}	-0.937	-5.632^{a}	-6.371°			
	(0.596)	(0.716)	(0.828)	(1.403)	(2.078)			
Cdn. Tariff					-17.952^{a}			
\times Turnover					(5.489)			
U.S. Tariff					20.131°			
\times Turnover					(10.289)			
1994	0.179 ^a	0.172 ^a	0.117 ^a	0.301 ^a	0.186ª			
	(0.020)	(0.022)	(0.025)	(0.040)	(0.021)			
R^2 (within)	0.175	0.173	0.129	0.338	0.191			
Root MSE	0.149	0.152	0.149	0.154	0.149			
No. of Obs.	1828	1628	1183	445	1693			

Note: Fixed industry year effects are not reported except for 1994 which approximates the percent change from 1988. Standard errors in parentheses.^a,^b,^c indicate significance in a two-tail test at the 1, 5 and 10 percent levels.

- Effect depends on whether there is free entry or not, imperfect competition or not

New Economic Geography

Table 4 Effects of tariffs on log # of plants (ln *n*)

	Sample: All	Imp. Com.	IC+Free	IC+Fixed	All
Canadian Tariff	1.352 ^a	1.629 ^a	1.957 ^a	-0.384	-2.015 ^b
	(0.264)	(0.286)	(0.305)	(0.719)	(0.783)
U.S. Tariff	1.218 ^a	0.953°	1.143 ^b	1.781	2.579 ^c
	(0.428)	(0.499)	(0.554)	(1.090)	(1.433)
Cdn. Tariff					14.634 ^a
\times Turnover					(3.786)
U.S. Tariff					-2.195
\times Turnover					(7.097)
1994	-0.111^{a}	-0.099^{a}	-0.087^{a}	-0.14^{a}	-0.142^{a}
	(0.014)	(0.015)	(0.017)	(0.031)	(0.014)
R^2 (within)	0.438	0.436	0.506	0.290	0.498
Root MSE	0.107	0.106	0.100	0.119	0.103
No. of Obs.	1828	1628	1183	445	1693

Note: Fixed industry and year effects are not reported except for 1994 which approximates the percent change from 1988. Standard errors in parentheses.^a,^b,^c indicate significance in a two-tail test at the 1, 5 and 10 percent levels.

- Strange results on the number of plants

Conclusion

- Problems of the Krugman models: homogeneous firms, factors immobile across countries

- Next lectures: New economic geography, heterogeneous firms: relax these assumptions

Acknowledgment

Slides of this course are inspired by those taught by N. Berman, T. Chaney, A. Costinot, M. Crozet, D. Donaldson, E. Helpman, T. Mayer, I. Mejean